2,035 research outputs found

    Theoretical molecular line absorption of CO in late spectral type atmospheres

    Get PDF
    Theoretical molecular line absorption of carbon monoxide in late spectral type stellar atmosphere

    Estimation of sea surface temperature from remote sensing in the 11-13 micron window region

    Get PDF
    The Nimbus 3 and 4 IRIS spectral data in the 11-13 micron water vapor window region are analyzed to determine the sea surface temperature (SST). The high spectral resolution data of IRIS are averaged over approximately 1 micron wide intervals to simulate channels of a radiometer to measure the SST. Three channels are utilized to measure SST over cloud-free oceans. However, two of these channels are sufficient in routine SST determination. The differential absorption properties of water vapor in the two channels enable one to determine the water vapor absorption correction without detailed knowledge of the vertical profiles of temperature and water vapor. The feasibility of determining the SST is demonstrated globally with Nimbus 3 data where cloud-free areas can be selected with the help of albedo data from the MRIR experiment on board the same satellite

    Stratospheric constituent distributions from balloon-based limb thermal emission measurements

    Get PDF
    This research task deals with an analysis of infrared thermal emission observations of the Earth's atmosphere for determination of trace constituent distributions. Infrared limb thermal emission spectra in the 700-2000 cm(exp -1) region were obtained with a liquid nitrogen cooled Michelson interferometer-spectrometer (SIRIS) on a balloon flight launched from Palestine, Texas, at nighttime on September 15-16, 1986. An important objective of this work is to obtain simultaneously measured vertical mixing ratio profiles of O3, H2O, N2O, NO2, N2O5, HNO3 and ClONO2 and compare with measurements made with a variety of techniques by other groups as well as with photochemical model calculations. A portion of the observed spectra obtained by SIRIS from the balloon flight on September 15-16, 1986, has been analyzed with a focus on calculation of the total nighttime odd nitrogen budget from the simultaneously measured profiles of important members of the NO(sub x) family. The measurements permit first direct determination of the nighttime total odd nitrogen concentrations NO(sub y) and the partitioning of the important elements of the NO(sub x) family

    Fourier spectroscopy and planetary research

    Get PDF
    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed

    Water vapor in Jupiter's atmosphere

    Get PDF
    High spectral resolution observations of Jupiter at 2.7 and 5 microns acquired from the Kuiper Airborne Observatory were used to infer the vertical distribution of H2O between 0.7 and 6 bars. The H2O mole fraction, qH2O, is saturated for P<2 bars, qH2O = 4x.000001 in the 2 to 4 bar range and it increases to 3x.00001 at 6 bars where T = 288 K. The base of the 5 micron line formation region is determined by pressure-induced H2 opacity. At this deepest accessible level, the O/H ratio in Jupiter is depleted by a factor of 50 with respect to the solar atmosphere. High spatial resolution Voyager IRIS spectra of Jupiter's North Tropical Zone, Equatorial Zone, and Hot Spots in the North and South Equatorial Belt were analyzed to determine the spatial variation of H2O across the planet. The column abundance of H2O above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amgt. A cloud model for Jupiter's belts and zones was developed in order to fit the IRIS 5 micron spectra. An absorbing cloud located at 2 bars whose 5 micron optical thickness varies between 1 in the Hot Spots and 4 in the coldest zones satisfactorily matches the IRIS data

    High spectral resolution ground-based observations of Venus in the 450-1250 cm sup-1 region

    Get PDF
    The thermal emission of Venus was recorded during the winter of 1970-1971, and in 1973 using the 2.7m telescope at McDonald Observatory. The double beam Michelson interferometer installed at the Coude focus was used. The spectrum was recorded between 400/cm and 1,400/cm. For the 1970 observations, the spectral resolution was 0.25/cm and the linear spatial resolution was 3/4 of the disk of Venus. In 1973 the spectral resolution was 0.20/cm with a spatial resolution 1/3 of the planetary disk. In addition to Venus, the moon, the sky adjacent to each object, and the zenith sky were recorded to help eliminate the absorption and emission effects of the earth's atmosphere

    A search for global and seasonal variation of methane from Nimbus 4 IRIS measurements

    Get PDF
    The Nimbus 4 infrared interferometer spectrometer (IRIS) measurements in the region around wave number 1304 show absorption due to methane in the earth's atmosphere. From the laboratory measurements of the absorption coefficient and a selected vertical distribution corresponding to 1.13 atm cm of methane, a theoretical model for the transmittance at wave number 1304 is developed. The weighting function deduced from this model shows a maximum around 300 mb. Some weak absorption due to nitrous oxide in the atmosphere has been taken into account. The vertical temperature profile, derived from the 15 micron CO2 band in the IRIS spectrum, together with the methane weighting function have been used in a consistent way to compute the upwelling intensity at wave number 1304. The brightness temperature corresponding to the IRIS observed radiance at wave number 1304 has been compared with the brightness temperature deduced from the calculated upwelling intensity from 80 deg North to 80 deg South and for different periods of the year. This comparison shows that the two brightness temperatures agree with one another to within the accuracy of measurements about 2 K. From this result it was found that global or seasonal variability of methane is less than + or - 0.25 atm cm

    The Nimbus 4 Infrared Spectroscopy Experiment, IRIS-D. Part 1: Calibrated Thermal Emission Spectra

    Get PDF
    Calibrated infrared emission spectra of earth and atmosphere using high resolution interferometer spectrophotometer on Nimbus 4 satellit

    Mars: Mariner 9 spectroscopic evidence for H2O ice clouds

    Get PDF
    Spectral features observed with the Mariner 9 Interferometer Spectrometer are identified as those of water ice. Measured spectra are compared with theoretical calulations for the transfer of radiation through clouds of ice particles with variations in size distribution and integrated cloud mass. Comparisons with an observed spectrum from the Tharsis Ridge region indicate water ice clouds composed of particles with mean radius 2.0 microns and integrated cloud mass 0.00005 g/sq cm

    Stratospheric sounding by infrared heterodyne spectroscopy

    Get PDF
    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given
    • …
    corecore